CMOS Test Systems

Testing the conversion efficiency of CMOS image sensors

Model CTS

- CTS-QE (Quantum efficiency measurement with a spectrally tunable source)
- CTS-PTC (Photon Transfer Curve measurement with variable input level)

The System

- Automated measurement of conversion efficiency of a CMOS image sensor at a selected source (monochromatic or white)
 - Uniform irradiation on the whole image sensor area > 20 mm x 20 mm
 - Sensor input calibrated and monitored for radiance (W/m²sr) or irradiance (W/m²)
- Customized instrumentation solution including a software

CTS-QE

CTS-PTC

Spectrally Tunable QE Measurement

- CTS combined with a spectrally tunable monochromatic light source
 - QE measured as a function of wavelength from 300 nm to 1000 nm
 - Sensor input calibrated and monitored for spectral irradiance (W/m²)
- Fully automated measurement of QE with traceability to KRISS

CTS

CTS-QE

*CTS-PTC

PTC Measurement in High Dynamic Range

- High-dynamic range variation of light input
 - Collimated beam from the fiber-coupled LED source (beam diameter > 5 mm)
 - Computer-controlled variable ND filter for light input variation at up to 100 points
- Light input to the sensor monitored via a beam splitter
 - Calibrated for irradiance (W/m²) and illuminance (Ix) at the sensor position

CTS-PTC

© 2023. QRAD. All Rights Reserved