Development of an Integrating Sphere Light Source of Multiple Lighting Elements for Generation of Wide Dynamic Range of Luminance

Seongchong Park*, Dong-Hoon Lee, Bong-Hak Kim, Chul-Woung Park, and Jae-Keun Yoo
Division of Physical Metrology, Korea Research Institute of Standards and Science (KRISS)

Motivation

At KRISS, one of the most in-demand services in the field of photometry is of luminance meters. While we currently provide the luminance calibration service at the range of $(1 \sim 3000) \mathrm{cd} / \mathrm{m}^{2}$ using a QTH lamp-based sphere source, several customers have asked for extension of the calibration range down to $0.001 \mathrm{~cd} / \mathrm{m}^{2}$ and up to $100000 \mathrm{~cd} / \mathrm{m}^{2}$. To meet this needs, we developed a new sphere source of multiple lighting elements which is capable of generating a wide dynamic range of luminance ($0.001 \sim 100 \mathbf{0 0 0}$) cd/m ${ }^{2}$ and a variety of spectral distributions as well.

- Design Parameters

- integrating sphere
- $\phi 500 \mathrm{~mm}, \mathrm{BaSO}_{4}$ coated ($\rho \sim 95 \%$), no center baffle
- 1 window ($\phi 100 \mathrm{~mm}$), 8 source ports ($\phi 40 \mathrm{~mm}$), 2 detector ports ($\phi 25 \mathrm{~mm}$) - estimated luminance throughput $\sim 10.4\left(\mathrm{~cd} / \mathrm{m}^{2}\right) / \mathrm{lm}$
- light sources
- 10 W-RGBY LED for colorimeter calibration
$R \sim 270 \mathrm{~lm} \times 2 \mathrm{EA}, \mathrm{G} \sim 440 \mathrm{~lm} \times 2 \mathrm{EA} ., \mathrm{B} \sim 100 \mathrm{~lm} \times 2 \mathrm{EA}, \mathrm{Y} \sim 305 \mathrm{~lm} \times 2 \mathrm{EA}$
- 75 W -6500 K LED ($\sim 9600 \mathrm{~lm} \times 2 \mathrm{EA}$) for wide-dynamic range luminance generation and luminance meter linearity test
- $75 \mathrm{~W}-3000 \mathrm{~K}$ LED $(\sim 8500 \mathrm{Im} \times 1 \mathrm{EA})$
$-75 \mathrm{~W}-2700 \mathrm{~K}$ LED $(\sim 6430 \mathrm{Im} \times 1 \mathrm{EA})$
- $150 \mathrm{~W}-2860 \mathrm{~K}$ QTH ($\sim 800 \mathrm{Im} \times 1 \mathrm{EA}$) for CIE illuminant A condition
- $150 \mathrm{~W}-3100 \mathrm{~K}$ QTH ($\sim 1500 \mathrm{Im} \times 1 \mathrm{EA}$) for spectral radiance calibration
- all LEDs are temperature-controlled at $35^{\circ} \mathrm{C}$.
- power supply
- voltage controlled current source ($0 \sim 10 \mathrm{~V}$ scaled) +16 bit DAC
- $1 \mathrm{~A} / 27 \mathrm{~V} 4$ channels (RGBY LED)- $1 \mu \mathrm{~A}$ resolution (3 gain range)
$-2 \mathrm{~A} / 48 \mathrm{~V} 4$ channels (W LED) $-0.2 \mu \mathrm{~A}$ resolution (4 gain range)
- $6.25 \mathrm{~A} / 27 \mathrm{~V} 2$ channels (QTH) - 62 mA resolution (1 gain range)
- monitoring detectors
- 1 filter-photometer of FOV $\sim 5^{\circ}$ (area $=3.6 \mathrm{~mm} \times 3.6 \mathrm{~mm}:, \mathrm{s}_{\mathrm{L}}=66 \mathrm{pA} /\left(\mathrm{cd} / \mathrm{m}^{2}\right)$, NEP $=4 \mathrm{fW}\left(13 \mu \mathrm{~cd} / \mathrm{m}^{2}\right)$ for luminance monitor and feedback control
- 1 spectroradiometer of FOV $\sim 5^{\circ}(350 \mathrm{~nm} \sim 850 \mathrm{~nm})$

side view
another side view

2860 K incandescent (illuminant A)

\square Characterization of Output Luminance Field: Luminance, Chromaticity, etc.
*smcf: spectral mismatch correction factor for the monitor photometer

Type	V/l-gain	$\mathrm{V}(\mathrm{V})$	$\mathrm{I}(\mathrm{A})$	smcf	$L_{V}\left(\mathrm{~cd} / \mathrm{m}^{2}\right)$	x	y	$\mathrm{CCT}(\mathrm{K})$
QTH $_{1}$	$\mathrm{~N} . \mathrm{A}$.	6.984	4.717	1.000	5752	0.449	0.411	2857
QTH $_{2}$	$\mathrm{~N} . \mathrm{A}$.	8.025	5.379	1.000	12228	0.431	0.405	3106
2700 K	$4 / 4$	1	0.200	1.030	8324	0.462	0.415	2706
3000 K	$4 / 4$	1	0.200	1.031	9302	0.437	0.412	3067
$6500 \mathrm{~K}-1$	$4 / 4$	1	0.200	1.029	10152	0.311	0.332	6599
6500K-2	$4 / 4$	1	0.200	1.031	10153	0.312	0.335	6481
RED	$3 / 3$	1	0.100	0.923	702.8	0.701	0.299	N.A.
GREEN	$3 / 3$	1	0.100	1.043	1475	0.235	0.715	N.A.
BLUE	$3 / 3$	1	0.100	0.640	370.4	0.151	0.039	N.A.
YELLOW	$3 / 3$	1	0.100	1.125	728.8	0.578	0.422	N.A.

\square Characterization of Output Luminance Field: Uniformity and Temporal Stability

line-to-line: 0.1 \%

line-to-line: (0.0001)

line-to-line: (0.0001)

100100
stability for 10 min . at $10^{5} \mathrm{~cd} / \mathrm{m}^{2}$
$\widehat{\xi}^{100050}$

stability for 10 min . at $10^{-3} \mathrm{~cd} / \mathrm{m}^{2}$

