CIE 2017, Jeju, Korea Poster# PO44

Development of an Integrating Sphere Light Source of Multiple Lighting Elements for Generation of Wide Dynamic Range of Luminance

Seongchong Park*, Dong-Hoon Lee, Bong-Hak Kim, Chul-Woung Park, and Jae-Keun Yoo Division of Physical Metrology, Korea Research Institute of Standards and Science (KRISS)

Motivation

At KRISS, one of the most in-demand services in the field of photometry is of luminance meters. While we currently provide the luminance calibration service at the range of (1 ~ 3000) cd/m² using a QTH lamp-based sphere source, several customers have asked for extension of the calibration range down to 0.001 cd/m² and up to 100 000 cd/m². To meet this needs, we developed a new sphere source of multiple lighting elements which is capable of generating a wide dynamic range of luminance (0.001 ~ 100 000) cd/m² and a variety of spectral distributions as well.

Characterization of the Monitor Luminance Meter

Design Parameters

• integrating sphere

- $-\phi 500$ mm, BaSO₄ coated ($\rho \sim 95$ %), no center baffle
- 1 window (ϕ 100 mm), 8 source ports (ϕ 40 mm), 2 detector ports (ϕ 25 mm) —
- estimated luminance throughput ~10.4 (cd/m²)/lm

• light sources

- 10 W-RGBY LED for **colorimeter calibration** R ~270 Im × 2 EA, G ~440 Im × 2 EA., B ~100 Im × 2 EA, Y ~305 Im × 2 EA
- 75 W-6500 K LED (~9600 lm \times 2 EA) for wide-dynamic range luminance generation and luminance meter linearity test
- 75 W-3000 K LED (~8500 lm × 1 EA)
- 75 W-2700 K LED (~6430 lm × 1 EA)
- 150 W-2860 K QTH (~800 lm \times 1 EA) for **CIE illuminant A condition**
- 150 W-3100 K QTH (~1500 lm \times 1 EA) for spectral radiance calibration
- all LEDs are temperature-controlled at 35 °C.

• power supply

- voltage controlled current source ($0 \sim 10$ V scaled) + 16 bit DAC
- -1 A/ 27 V 4 channels (RGBY LED)-1 μ A resolution (3 gain range)
- -2 A/48 V 4 channels (W LED) -0.2 μ A resolution (4 gain range)
- 6.25 A/ 27 V 2 channels (QTH) 62 mA resolution (1 gain range)
- monitoring detectors
 - 1 filter-photometer of FOV ~5° (area =3.6 mm ×3.6 mm:, $s_1 = 66 \text{ pA/(cd/m^2)}$, NEP = 4 fW (13 μ cd/m²) for luminance monitor and feedback control
 - 1 spectroradiometer of FOV $\sim 5^{\circ}$ (350 nm ~ 850 nm)

□ Characterization of Output Luminance Field: Luminance, Chromaticity, etc.

*smcf: spectral mismatch correction factor for the monitor photometer

Туре	V/I-gain	V(V)	I(A)	smcf*	$L_{v}(cd/m^{2})$	X	У	CCT(K)
QTH ₁	N.A.	6.984	4.717	1.000	5752	0.449	0.411	2857
QTH ₂	N.A.	8.025	5.379	1.000	12228	0.431	0.405	3106
2700K	4/4	1	0.200	1.030	8324	0.462	0.415	2706
3000K	4/4	1	0.200	1.031	9302	0.437	0.412	3067
6500K-1	4/4	1	0.200	1.029	10152	0.311	0.332	6599
6500K-2	4/4	1	0.200	1.031	10153	0.312	0.335	6481
RED	3/3	1	0.100	0.923	702.8	0.701	0.299	N.A.
GREEN	3/3	1	0.100	1.043	1475	0.235	0.715	N.A.
BLUE	3/3	1	0.100	0.640	370.4	0.151	0.039	N.A.
YELLOW	3/3	1	0.100	1.125	728.8	0.578	0.422	N.A.

2860 K incandescent (illuminant A)	Red (LED)	Green (LED)
	Blue (LED)	Yellow (LED)

Characterization of Output Luminance Field: Uniformity and Temporal Stability

October 22 ~ 25, 2017

*spark@kriss.re.kr

