# SPAD Test System

Testing the performance of single photon avalanche detectors (SPADs)

Model STS

#### Modules

- STS-IS (Integrating sphere-based photon flux source)
- STS-GM (Geiger-mode operation module for APDs) in preparation
- STS-AC (FPGA-based auto-correlation measurement unit) in preparation

### System Variations

- STS-SP (Spectrally tunable detection efficiency measurement in free space)
- STS-SP-F (Spectrally tunable detection efficiency measurement in fiber)



## The System

- Easy and fast test of key performances of a SPAD at a selected wavelength
  - Dark counts, dead time, after-pulsing probability
  - Detection efficiency (based on photon irradiance calibration)
- Customized instrumentation solution including a software



- STS
- STS-IS
- STS-GM
- •STS-AC
- STS-SP
- STS-SP-F

## Integrating Sphere-based Photon Flux Source

- Integrating sphere with a diameter of 50 mm
- Monochromatic LED source coupled via a multimode fiber
  - Wavelength selectable from 280 nm to 1450 nm (see Thorlabs "fiber-coupled LEDs")
- Photon irradiance calibrated at the measurement aperture (for DE measurement)





•STS-IS

STS-GM

STS-AC

STS-SP

STS-SP-F

# Spectrally Tunable DE Measurement in Free Space

- STS-IS combined with a spectrally tunable monochromatic light source
  - DE measured as a function of wavelength from 300 nm to 1600 nm
- Fully automated measurement of DE with traceability to KRISS



- STS
- •STS-IS
- STS-GM
- STS-AC
- STS-SP
- STS-SP-F

# Spectrally Tunable DE Measurement in Fiber

- DE comparison with a fiber-coupled spectrally tunable monochromatic light source
  - DE measured as a function of wavelength from 800 nm to 1600 nm
  - Extension to 300 nm 800 nm possible by changing the fiber components
- Fully automated measurement of DE with traceability to KRISS



STS

•STS-IS

STS-GM

STS-AC

STS-SP

STS-SP-F

# Specifications for Spectrally Tunable DE Measurement

|   | _ |   |
|---|---|---|
| S | т | S |
| • |   | • |

|                                          | STS-SP (free-space)                                              | STS-SP-F (fiber)                                   |  |
|------------------------------------------|------------------------------------------------------------------|----------------------------------------------------|--|
| Spectral light source                    | QTH lamp with a single-grating monochromator                     |                                                    |  |
| Wavelength range                         | 300 nm – 1600 nm <sup>1)</sup>                                   |                                                    |  |
| Spectral bandwidth                       | < 5 nm                                                           |                                                    |  |
| Wavelength<br>accuracy                   | < 0.2 nm                                                         |                                                    |  |
| Spectral stray                           | < 10 <sup>-4</sup> above 350 nm, < 10 <sup>-3</sup> below 350 nm |                                                    |  |
| Radiant power stability                  | < ±0.02%                                                         |                                                    |  |
| Beam incidence on SPAD under test        | Overfilled with a uniform flux in free space                     | Coupled from a single-mode fiber (FC/PC connector) |  |
| Calibrated quantity                      | Irradiance (W/m²) or photon irradiance (counts/s/m²)             | Radiant flux (W) or photon flux (counts/s)         |  |
| Spatial uniformity of flux at DUT        | < 0.1% in a diameter of 12 mm                                    | N.A.                                               |  |
| DE measurement uncertainty <sup>2)</sup> | < 2% ( <i>k</i> = 2)                                             |                                                    |  |

- 1) For STS-SP-F, different fiber components are required for the range 300 nm 800 nm and the range 800 nm 1600 nm.
- 2) For the optimal accuracy, the corrections related with dark counts and after-pulsing probability of the SPAD under test should be properly applied.

<sup>•</sup>STS-SP





© 2023. QRAD. All Rights Reserved